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This paper presents an integrated inventory model with variable production rate and

price-sensitive demand rate. The buyer’s purchases trade credit linked to the order

quantity offered by the supplier. In addition, the buyer pays the freight charge according

to a weight schedule. This paper attempts to offer a best policy that aims at maximizing

the joint total profit while the trade credit and freight rate are simultaneously linked to

the order quantity. The same policy also incorporates considerations on the optimal

retail price, order quantity and delivery decision. We provide possible solutions for the

buyer and the supplier to collaboratively agree on inventory control, warehouse

management, transportation logistics, delivery and billing. Our study demonstrates that

significant profit increase for the entire supply chain can be achieved by linking both

trade credit policy and freight rate policy to order quantities. An algorithm is furnished

to determine the optimal solution. In addition, numerical examples and sensitivity

analysis are presented to illustrate the theoretical results.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

To promote sales, suppliers often award trade credit to
buyers. As shown in previous literature, such as Petersen
and Rajan (1995, 1997), Nielsen (2002) and Fisman and
Love (2003), buyers may be financed by their suppliers
rather than by financial institutions. Since Goyal (1985)
first established an economic order quantity (EOQ) model
that allows for delayed payment terms or credit terms,
many researchers have addressed this topic with inter-
esting results: e.g. Kim et al. (1995), Aggarwal and Jaggi
(1995), Brigham (1995), Jamal et al. (1997), Arcelus and
Srinivasan (2001), Teng (2002), Biskup et al. (2003),
ll rights reserved.

: +886 2 86313214.

uyang).
Salameh et al. (2003), Teng et al. (2005, 2006), Chung
and Huang (2007), Huang and Hsu (2008) and Liao (2008).
All previous models implicitly assumed that credit terms
are independent of the order quantity. In reality, suppliers
may offer favorable credit terms to encourage buyers to
order larger quantities. Khouja and Mehrez (1996) were
the first proponents to discuss supplier credit policies in
the EOQ model where credit terms are linked to the order
quantity. Later, Chang et al. (2003) established an EOQ
model for deteriorating items, in which the supplier credit
is linked to order size. Other researchers dealt with similar
order size and trade credit relations such as Shinn and
Hwang (2003), Chung and Liao (2004, 2006) and Chung
et al. (2005).

Given the intense market competition of late, trans-
portation costs are critical in many operating decisions.
An appropriate transportation cost function should be
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incorporated into models with all other relevant costs.
Tersine et al. (1989) published an economic inventory-
transport model with freight discounts. The models
proposed by Lee (1986), Hwang et al. (1990) and Tersine
and Barman (1991, 1994) combined freight discounts with
all-unit or incremental discounts. Russell and Krajewski
(1991) presented an analytical approach to find the
optimal order quantity that minimized the total purchase
cost, which reflects both transportation economies and
quantity discounts. Shinn et al. (1996) allowed freight
discounts to be linked to credit terms, when formulating
the retailer’s optimal purchase lot size model. Swenseth
and Godfrey (2002) proposed a model in which
two freight rate functions, the inverse function and the
adjusted inverse function, were incorporated into the total
annual logistics cost function to determine the impact on
purchasing decisions. Lately, Abad and Aggarwal (2005)
presented a model that allows for over-declaring the
shipment weight and for less-than-truckload (LTL) or
truckload (TL) shipments.

In the existing literature on classical inventory models,
the production rate and the unit production cost are
assumed to be constant. In reality, it has been observed
that the production rate and the unit production cost vary
with changes in the demand rate in many situations.
Cheng (1991) proposed an EOQ model to shed light on the
relationship between demand-dependent unit production
cost and imperfect production processes. Khouja and
Mehrez (1994) extended the economic production lot size
model to cases where the production rate is a decision
variable. In their model the unit production cost is treated
as a function of the production rate. Bhunia and Maiti
(1997) presented two inventory models in which the
production rate depended upon on-hand inventory for the
first model and upon demand for the second. Manna and
Chaudhuri (2001) discussed an EOQ model with deterior-
ating items in which the production rate is related to the
time-dependent demand rate.

Previous studies about trade credit and transportation
cost were concerned only with decisions that minimized
the cost for the buyer or maximized the profit for the
supplier. However, the complicated interaction and co-
operation opportunities were considered trivial and
ignored in their consideration. In reality, independent
and conflicting production plans were often made by
members in the supply chain to achieve individual goals.
Therefore, an aggregate approach to planning with an
emphasis on improving supply chain efficiency is needed
to help business survive in this fiercely competitive world.
Goyal (1976) first developed an integrated inventory
model focusing on a single supplier–single buyer scenario.
Afterwards, Banerjee (1986) further extended Goyal’s
model with one additional assumption that the suppliers
follow a lot-for-lot shipment policy. Many researchers
(e.g., Joglekar, 1988; Lu, 1995; Goyal, 1995; Viswanathan,
1998; Hill, 1999; Kelle et al., 2003, 2007) followed
the same line of reasoning but proposed more batching
and shipping policies for an integrated inventory model.
These researches on the integrated supplier–buyer in-
ventory study focused on the production–distribution
schedule in terms of the number and size of the lots
transferred between both parties. Recently, some re-
searchers also considered a pricing and lot-size policy in
an integrated inventory model that includes trade credit
considerations (e.g., Abad and Jaggi, 2003; Ouyang et al.,
2005; Luo 2007). However, the effects that transportation
charges may have on policy alternatives were ignored in
their study.

Cost reduction from either a trade credit or a discount
in freight rate gives the buyer incentive to lower the retail
price in order to increase market share. Change in price
affects demand, which in turn affects decisions on
production, shipping, inventory, and trade credit policies.
In this paper we will consider a scenario in which a single
supplier and a single buyer deal with a price-sensitive
product. The production cost is assumed to be a convex
function of the production rate. We would like to explore
the process of arriving at the best policy that includes the
optimal retail price, order quantity and delivery, to
maximize the joint total profit in a model where both
trade credit and freight rate are linked to order quantity.
An algorithm is provided to determine the optimal
solution. Numerical examples are presented to demon-
strate the results of the proposed model. Furthermore, a
sensitivity analysis is done on some relevant parameters
in the optimal solutions and the result is included.
2. Assumptions and notations

The proposed model is developed based on the
following assumptions and notations:
1.
 There is a single supplier and a single buyer for a
single product in this paper.
2.
 Shortage considerations are excluded.

3.
 The carrying cost rate is rV for the supplier and rB for

the buyer; the interest charge is not considered.

4.
 The market demand for the product is assumed to be

sensitive to the buyer’s selling price p and is defined
as D(p) ¼ ap�d, where a is a scaling factor that is
greater than 0; d is a price-elasticity coefficient that is
greater than 1. For notational simplicity, D(p) and D

will be used interchangeably in this paper.

5.
 The capacity utilization, r, is the ratio of the demand

rate, D, to the production rate, R; it is always less than
1. (r ¼ D/R and ro1.)
6.
 The same assumption used in Khouja (1995) is used
here, the unit production cost c(R) is a convex function
of the production rate, R. That is, c(R) ¼ c0+c1/R+c2R,
where c0, c1 and c2 are non-negative real numbers to
be set to best fit the estimated unit production cost
function. The fixed cost c0 can be regarded as the
material cost. The cost component c1/R decreases as
the production rate (R) increases, representing costs
such as labor cost and energy cost, both are equally
distributed over a large number of units. The third
term (c2R) denotes a cost component that increases
with the production rate. Such cost would include
additional tool or die wear at high production rate. For
notational simplicity, c(R) and c are used interchange-
ably in this paper.
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7.
 For each unit of product, the supplier spends $c in
production and receives $v from the buyer. The buyer
then sells the product at $p to his/her customers. Here,
p is greater than v, and v, in turn, is greater than c

(p4v4c).

8.
 The supplier offers a credit period NZ, which is linked

to order size in the schedule as follows:

Z Q NZ

1 W1pQoW2 N1

2 W2pQoW3 N2

^ ^ ^
l WlpQoWl+1 Nl
where 0 ¼ W1oW2o?oWloWl+1 ¼N, each repre-
sents a boundary quantity. NZ denotes the credit
period applicable to orders whose lot size Q falls in the
interval WZ to WZ+1 with 0oN1oN2o?oNl.
9.
 During the credit period, the buyer sells the items
and uses the sales revenue to earn interest at a rate
of IBe. At the end of the credit period, the buyer
pays the purchasing cost to the supplier and
incurs a capital opportunity cost at a rate of IBp for
the items remaining in stock. The buyer’s interest
earned per unit time is more than his/her capital
opportunity cost per unit time from trade credit, i.e.,
pIBe4vIBp.
10.
 In offering trade credit to the buyer, the supplier
endures a capital opportunity cost at rate IVp during
the period between product shipped and paid for,
where IVppIBp.
11.
 The buyer’s replenishment cycle length is T and order
quantity is Q ( ¼ DT) per order. For each order, the
buyer incurs an ordering cost, SB.
12.
 During the production period, the supplier manufac-
tures in batches of size nQ, where n is an integer, and
incurs a batch setup cost SV. Once the first Q units are
produced, the supplier delivers them to the buyer and
then continues making the delivery on average every
T( ¼ Q/D) units of time until the supplier’s inventory
level falls to zero.
13.
The accumulated 
quantity to earn 

Case 1. T < Mj Case 2. T ≥ Mj
The supplier charges freight for shipping according to
a weight schedule that is defined below:

e W ce

1 m1pWom2 c1

2 m2pWom3 c2

^ ^ ^
M mmpWomm+1 cm
interest

Time

Q

Inventory Level

T Mj

Inventory Level

Time

Q

TMj

The accumulated 
quantity to earn 
interest

Fig. 1. The inventory level and accumulated interest earned for the

buyer.
where 0 ¼ m1om2o?ommomm+1 ¼N is the bound-
ary values of the freight weights at which freight rate-
break occurs. ce denotes that the freight rate applic-
able to the shipping weight W falls in the interval me to
me+1 with c14c24?4cm40. The shipping weight of
the product is y lbs per unit, i.e. W ¼ yQ. The unit
shipping cost is therefore the unit shipping weight
times the freight rate, which is Fe ¼ yce.
3. Model formulation
The buyer is presented with an order-size-based credit
terms schedule and a freight rate discounts schedule.
The approach adopted in Tersine and Barman (1991) is
used here; we combine the two discount schedules in
assumptions 8 and 13 into a restructured new discount
schedule. The reorganized process is accomplished by
identifying all possible lot-size intervals with no breaks
within each interval. The restructured discount schedule
becomes
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J
 W
 Mj
 Fj
1
 q1pQoq2
 M1
 F1
2
 q2pQoq3
 M2
 F2
^
 ^
 ^
 ^

K
 qkpQoqk+1
 Mk
 Fk
where kpl+m. For qjpQoqj+1, j ¼ 1,2, y ,k, the length of
credit period offered by the supplier is Mj and the freight
rate charged by the supplier is Fj dollars per unit, where
0 ¼ q1oq2o?oqkoqk+1 ¼N, 0oM1oM2o?oMk and
F14F24?4Fk40.

3.1. Buyer’s total profit per unit time

For each order quantity Q 2 ½qj; qjþ1Þ, the buyer pays vQ to
the supplier and receives pQ from the customers. Therefore,
sales revenue per unit time is (p�v)Q/T ¼ (p�v)ap�d for the
buyer. In addition, the buyer incurs an ordering cost per unit
time SB/T, a transportation cost per unit time FjQ/T ¼ ap�dFj

and an inventory holding cost (excluding interest charges)
per unit time vrBQ/2 ¼ vrBap�dT/2.

During the credit period, the buyer sells the item and
uses the sales revenue to earn interest at a rate of IBe.
At the end of the permissible delay period, the buyer
pays the purchasing cost to the supplier and incurs a
capital opportunity cost at a rate of IBp for the items left
unsold. For possible values of Mj and T, the buyer has the
following two possible cases: (i) ToMj, (ii)TXMj. For
details, see Fig. 1.

Case 1: ToMj

In this case, the inventory is completely depleted
before the delayed payment due date, so the buyer pays
no opportunity cost for the items kept in stock. At the
same time, the buyer uses the sales revenue to earn
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interest at a rate of IBe. Therefore, the interest earned per
unit time is

pIBe

T

Z T

0
Dt dt þ DTðMj � TÞ

� �
¼ ap�dþ1IBeðMj � T=2Þ.

Case 2: TXMj

This situation represents that the inventory is depleted
either on the delayed payment due date or after. Since
after the due date Mj the buyer still has some inventory,
the capital opportunity cost per unit time is

vIBp

T

Z T

Mj

DðT � tÞdt ¼ vIBpap�dðT �MjÞ
2=ð2TÞ.

In either case, as the buyer does not pay the supplier
until the end of the credit period, the buyer can use
the sales revenue during the credit period to earn interest
at a rate of IBe. Therefore, the interest earned per unit
time is

pIBe

T

Z Mj

0
Dt dt ¼ ðap�dþ1IBeM2

j Þ=ð2TÞ.

Note that many researchers used different ways to
calculate the interest earned and opportunity cost. In this
paper, we use the Teng (2002) approach throughout this
paper.

The total profit per unit time for the buyer is the total
sales revenue minus the total relevant cost (which
includes ordering cost, transportation cost, holding cost
excluding interest charges and opportunity cost) plus
interest earned. Therefore, the buyer’s total profit per unit
time can be expressed as

TBPjðp; TÞ ¼
TBP1jðp; TÞ if ToMj;

TBP2jðp; TÞ if TXMj;

(
(1)

where

TBP1jðp; TÞ ¼ ap�dðp� vÞ �
SB

T
þ ap�dFj þ

vrBap�dT

2

� �

þ ap�dþ1IBe Mj �
T

2

� �
, (2)

and

TBP2jðp; TÞ ¼ ap�dðp� vÞ �
SB

T
þ ap�dFj þ

vrBap�dT

2

�

þ
vIBpap�dðT �MjÞ

2

2T

#
þ

ap�dþ1IBeM2
j

2T
. (3)

3.2. Supplier’s total profit per unit time

Throughout each production run, the supplier manu-
factures in batches of size nQ and incurs a batch setup cost
SV. The cycle length for the supplier is nQ/D( ¼ nT).
Therefore, the supplier’s setup cost per unit time is
SV/nT. The inventory carrying cost includes storage and
handling expenses, insurance and taxes as well as the time
value of capital tied up in inventories. With the unit
production cost c, the carrying cost rate excluding interest
charges rV and the capital opportunity cost per dollar
per unit time IVp, using the same approach as in
Joglekar (1988), the supplier’s carrying cost per unit time
is given by

cðrV þ IVpÞ
ap�dT

2
½ðn� 1Þð1� rÞ þ r�.

By offering credit terms to the buyer, the supplier gives
up an immediate cash inflow until a later date. We use Mj

to represent the time delay. With a finance rate IVp, the
lost-opportunity cost per unit time for offering trade
credit is vIVpQMj/T ¼ vIVpap�dMj.

The total profit per unit time for the supplier is derived
by taking out the total relevant cost (including the setup
cost, inventory holding cost, and opportunity cost for the
trade credit offered) from the total sales revenue. It is
represented in the following function:

TVPjðn; TÞ ¼ ðv� cÞap�d �
SV

nT
�

cðrV þ IVpÞap�dT

2

�½ðn� 1Þð1� rÞ þ r� � vIVpap�dMj: (4)
3.3. The joint total profit per unit time

Once the supplier and buyer have established a long-
term strategic partnership by entering into a contract
relationship, they can jointly determine the best policy for
the entire supply chain system. Under this circumstance
the joint total profit per unit time for the supplier and
buyer is

Pjðn; p; TÞ ¼
P1jðn; p; TÞ if ToMj;

P2jðn; p; TÞ if TXMj;

(
(5)

where

P1jðn; p; TÞ ¼ TVPjðn; TÞ þ TBP1jðp; TÞ

¼ �
1

T

SV

n
þ SB

� �
þ ap�d p� c � Fj

�
þ ðpIBe � vIVpÞMj �

T

2
vrB þ pIBe

�
þcðrV þ IVpÞ½ðn� 1Þð1� rÞ þ r�

��
, (6)

and

P2jðn;p; TÞ ¼ TVPjðn; TÞ þ TBP2jðp; TÞ

¼ �
1

T

SV

n
þ SB

� �
þ ap�d p� c � Fj

�

þ vðIBp � IVpÞMj þ
ðpIBe � vIBpÞM

2
j

2T

�
T

2
fvðrB þ IBpÞ þ cðrV þ IVpÞ½ðn� 1Þð1� rÞ þ r�g

�
.

(7)

Our task here is to determine the buyer’s optimal retail
price, p�, the optimal replenishment cycle length, T�, and
the optimal number of shipments per production run
from the supplier to the buyer, n�, which maximize the
joint total profit per unit time, Pj(n, p, T), for all j ¼ 1, 2, y ,
k. Once the optimal solution ðp�; T�Þ is arrived at the
buyer’s optimal order quantity per order Q� ¼ Dðp�ÞT� ¼

aðp�Þ�dT� follows.
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4. Solution procedure

To examine the effect of n on the joint total profit per
unit time, we first take the second-order partial derivative
of (5) with respect to n, for j ¼ 1,2, y ,k, to obtain

q2Pjðn; p; TÞ

qn2
¼
q2Pijðn; p; TÞ

qn2
¼ �

2SV

n3T
o0 for i ¼ 1;2.

The results identify Pj(n, p, T), for j ¼ 1, 2, y , k, as a
concave function in n for fixed p and T. Thus, the search for
the optimal shipment number, n�, is reduced to finding a
local optimal solution.

4.1. Determination of the optimal replenishment cycle

length T for any given n and p

Having already decided n and p, we let T�j denote the
optimal replenishment cycle length which maximizes
Pj(n, p, T) in (5), for j ¼ 1, 2, y , k. Based on Eq. (6), by
taking the second-order partial derivative of P1j(n, p, T),
j ¼ 1, 2, y , k, with respect to T for fixed n and p, we have

q2P1jðn; p; TÞ

qT2
¼ �

2S̄

T3
o0; where S̄ ¼

SV

n
þ SB.

So for fixed n and p, P1j(n, p, T) is a concave function in T.
Thus, there exists a unique value of T (denoted by T1j),
which maximizes P1j(n, p, T). T1j can be obtained by
solving the equation qP1j(n, p, T)/qT ¼ 0, and is given by

T1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S̄

ap�d½ðvrB þ pIBeÞ þ cj�

s
, (8)

where j ¼ (rV+IVp)[(n�1)(1�r)+r].
To ensure T1joMj (i.e., Case 1), we substitute (8) into

inequality T1joMj, and obtain

if and only if T1joMj; then 2S̄oDj; where

Dj � ap�dðvrB þ pIBe þ cjÞM2
j . (9)

Substituting (8) into (6), we can obtain the joint total
profit function for Case 1:

P1jðn; pÞ � P1jðn; p; T1jÞ

¼ ap�d½p� c � Fj þ ðpIBe � vIVpÞMj�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ap�dS̄ðvrB þ pIBe þ cjÞ

q
. (10)

Next, for fixed n and p, solve the equation qP2j(n, p, T)/qT

¼ 0, we obtain the value of T (denoted by T2j) as

T2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S̄� ap�dðpIBe � vIBpÞM

2
j

ap�d½vðrB þ IBpÞ þ cj�

vuut . (11)

Substituting (11) into (7), we can obtain the joint total
profit function for Case 2:

P2jðn; pÞ � P2jðn; p; T2jÞ

¼ ap�d½p� c � Fj þ vðIBp � IVpÞMj�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ap�d½vðrB þ IBpÞ þ cj�

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S̄� ap�dðpIBe � vIBpÞM

2
j

q
. (12)
To ensure T2jXMj (i.e., Case 2), we substitute (11) into
inequality T2jXMj, and obtain:

if and only if T2jXMj; then 2S̄XDj where

Dj is defined as in ð9Þ. (13)

Note that when 2S̄XDj, it can be shown that
2S̄� ap�dðpIBe � vIBpÞM

2
j 40 (for the proof see Appendix A),

which implies T2j in (11) is well defined. Furthermore, we
have

q2P2jðn; p; TÞ

qT2
¼ �

1

T3

�½2S̄� ap�dðpIBe � vIBpÞM
2
j �o0

Thus, for fixed n and p, T2j in (11) is a unique value which
maximizes P2j(n, p).

Combining (9) and (13), we obtain the following
theorem.

Theorem 1. For any given n, p and j ¼ 1, 2, y , k, we have
(a)
 If 2S̄oDj, then the buyer’s optimal replenishment cycle

length is T�j ¼ T1j.

(b)
 If 2S̄XDj, then the buyer’s optimal replenishment cycle

length is T�j ¼ T2j.
Proof. It immediately follows from (9) and (13). &

It is easy to show that Tij, i ¼ 1, 2; j ¼ 1, 2, y ,k has the

following results, the proofs are omitted.

Property 1. T11 ¼ T12 ¼? ¼ T1k.

Property 2. T214T224 ? 4 T2k.

With 0oM1oM2o ? oMk, pIBe4vIBp, IBpXIVp as well

as (10) and (12), we can easily obtain the following

property, the proof is omitted.

Property 3. Pi1(n, p, Ti1)oPi2(n, p, Ti2)o?oPik(n, p, Tik),
for i ¼ 1,2.

To facilitate the explanations of properties 1, 2 and 3, we

present Fig. 2, which shows the shape of Pij(n, p, T) with

n ¼ 31 and p ¼ 13.964, while the other parameter values

are given as in Example 1 for i ¼ 1, 2; j ¼ 1, 2, 3, 4, 5.

Now, we can obtain the following main result:

Theorem 2. For any given n, p and j ¼ 1, 2,y, k, let

Qj ¼ DðpÞT�j , we have
(a)
 If qjpQjoqj+1, then Pj(n, p, T) at point T ¼ T�j has a

maximum value.

(b)
 If QjXqj+1, the lot size ordering by the buyer is over the

upper-bound under the credit period Mj, then T�j is not a

feasible solution.

(c)
 If Qjoqj, the lot size ordering by the buyer is less than

the lower-bound under the credit period Mj, then T�j
is not a feasible solution. However, Pj(n, p, T) is a

strictly decreasing function in TA[qj/D,qj+1/D],
hence, Pj(n, p, T) at point T ¼ qj/D has a maximum

value.
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Proof. It immediately follows from Theorem 1, Pj(n, p, T)
is a concave function of T, and the discount schedule
restructured from assumptions 8 and 13. &

Next, using the similar solution processes as Teng et al.
(2005), we can find the optimal solution for p.

4.2. Determination of the buyer’s optimal retail price p for

any given n

Theorem 2 indicates that the buyer’s optimal replen-
ishment cycle length is either T�j (when qjpQj ¼

DðpÞT�j oqjþ1Þ or qj/D. In the remaining part of this section
we will discuss the two situations in detail.

Situation 1. The buyer’s optimal replenishment cycle
length is T�j (when qjpQj ¼ DðpÞT�j oqjþ1).

For fixed n, motivated by (9) and (13), we let

f jðpÞ ¼ Dj ¼ ap�dðvrB þ pIBe þ cjÞM2
j .

Because c ¼ c0 þ c1=Rþ c2R and R ¼ D/r, the above
equation can be rewritten as

f jðpÞ ¼ ap�d vrB þ pIBe þ c0 þ
c1r
ap�d

þ
c2ap�d

r

� �
j

	 

M2

j .
Taking the derivative of fj(p) with respect to p, we have

df jðpÞ

dp
¼ � ap�d�1M2

j ðd� 1ÞpIBe þ 2ap�d
d
r

c2j
�

þdðc0jþ vrBÞ
�
o0. (14)

So fj(p) is a strictly decreasing function of p. Further-
more, because limp!0f jðpÞ ¼ 1 and limp!1f jðpÞ ¼ 0,
therefore, we can find a unique value p0j such that
f jðp0jÞ ¼ 2S̄, that is

2S̄ ¼ ap�d0j ðvrB þ p0jIBe þ cjÞM2
j . (15)

Thus, (9) and (13) becomes

if and only if T1joMj; then pop0j, (16)

and

if and only if T2jXMj; then pXp0j, (17)

respectively, where p0j is the value that satisfies (15).
Consequently, from (16) and (17), our task becomes

that of finding the optimal value of p which maximizes the



ARTICLE IN PRESS

L.-Y. Ouyang et al. / Int. J. Production Economics 115 (2008) 151–162 157
following joint total profit function when n is fixed:

Pjðn; pÞ ¼
P1jðn; pÞ if pop0j;

P2jðn; pÞ if pXp0j;

(
(18)

where P1j(n, p) and P2j(n, p) are given as in (10) and (12),
respectively.

The optimal value of p which maximizes P1j(n, p) can be
determined by solving the first-order necessary condition
(i.e., qP1j(n, p)/qp ¼ 0) and examining the second-order
condition for concavity (i.e., q2P1j(n, p)/qp2o0). Likewise,
the optimal value of p which maximizes P2j(n, p) can be
determined by solving the first-order necessary condition
(i.e., qP2j(n, p)/qp ¼ 0) and examining the second-order
condition for concavity (i.e., q2P2j(n, p)/qp2o0). The full
derivations for qP1j(n, p)/qp, q2P1j(n, p)/qp2, qP2j(n, p)/qp

and q2P2j(n, p)/qp2 are given in Appendix B.
Situation 2. The buyer’s optimal replenishment cycle

length is qj/D
In this situation, we substitute Tij ¼ qj/D ¼ qj/(ap�d),

i ¼ 1, 2, into (6) and (7), respectively, to obtain the joint
total profit function:

P1jðn; pÞ � P1jðn; p; T1jÞ ¼ �
ap�dS̄

qj

þ ap�d

� p� c � Fj þ ðpIBe � vIVpÞMj

�
�

qj

2ap�d
ðvrB þ pIBe þ cjÞ



, (19)

and

P2jðn; pÞ � P2jðn; p; T2jÞ ¼ �
ap�dS̄

qj

þ ap�d

� p� c � Fj þ vðIBp � IVpÞMj

�
þ
ðpIBe � vIBpÞap�dM2

j

2qj

�
qj

2ðap�dÞ
½vðrB þ IBpÞ þ cj�



. (20)

Furthermore, it can be shown that

if and only if T1joMj; then po ~p0j,

and

if and only if T2jXMj; then pX ~p0j,

where ~p0j ¼ ðaMj=qjÞ
1=d. (21)

As a result, for Situation 2, our problem becomes that of
finding the optimal value of p which maximizes the
following joint total profit function when n is fixed:

Pjðn; pÞ ¼
P1jðn; pÞ if po ~p0j;

P2jðn; pÞ if pX ~p0j;

(
(22)

where P1j(n, p) and P2j(n, p) are given as in (19) and (20),
respectively.

The optimal value of p which maximizes P1j(n, p) can be
determined by solving the first-order necessary condition
(i.e., qP1j(n, p)/qp ¼ 0) and examining the second-order
condition for concavity (i.e., q2P1j(n, p)/qp2o0). Likewise,
the optimal value of p which maximizes P2j(n, p) can be
determined by solving the first-order necessary condition
(i.e., qP2j(n, p)/qp ¼ 0) and examining the second-order
condition for concavity (i.e., q2P2j(n, p)/qp2o0). The full
derivations for qP1j(n, p)/qp, q2P1j(n, p)/qp2, qP2j(n, p)/qp

and q2P2j(n, p)/qp2 are given in Appendix C.
From the above arguments and Theorem 2, we can

establish the following algorithm to obtain the optimal
solution ðn�; p�; T�Þ.

Algorithm 1.
Step 1
 Set n ¼ 1
Step 2
 For j ¼ 1, 2, y , k, determine p0j by solving (15)
(a)
 If there exists a p1j such that p1jop0j and p1j

satisfies qP1j(n, p)/qp ¼ 0 and q2P1j(n, p)/qp2o0,

where P1j(n, p) is given as in (10), then determine

T�j ¼ T1jðp1jÞ from (8)
(b)
 If there exists a p2j such that p2jXp0j and p2j

satisfies qP2j(n, p)/qp ¼ 0 and q2P2j(n, p)/qp2o0,

where P2j(n, p) is given as in (12), then we

determine T�j ¼ T2jðp2jÞ from (11)
Step 3
 Calculate Qj ¼ DT�j and check each Qj under Mj,

j ¼ 1, 2, y , k
Step 3.1
 For j ¼ 1, 2, y,k�1,
(a)
 if qjpQjoqj+1, then T�j is a feasible solution, using

(10) or (12) to obtain(

Pjðn;pjÞ ¼

P1jðn; p1jÞ if p1jop0j;

P2jðn; p2jÞ if p2jXp0j:
(b)
 if QjXqj+1, then T�j is not a feasible solution. Set

Pj(n, pj) ¼ 0
(c)
 if Qjoqj, then determine ~p0j by solving (21)
(i)
 If there exists a p1j such that p1jo ~p0j

and p1j satisfies qP1j(n, p)/qp ¼ 0 and

q2P1j(n, p)/qp2o0, where P1j(n, p) is given

as in (19), then set T�j ¼ T1jðp1jÞ ¼ qj=ðap�d1j Þ.

We use (19) to obtain Pj(n, pj) ¼ P1j(n, p1j)
(ii)
 If there exists a p2j such that p2jX ~p0j

and p2j satisfies qP2j(n, p)/qp ¼ 0 and

q2P2j(n, p)/qp2o0, where P2j(n, p) is given

as in (20), then set T�j ¼ T2jðp2jÞ ¼ qj=ðap�d2j Þ.

We use (20) to obtain Pj(n, pj) ¼P2j(n, p2j)
Step 3.2
 For j ¼ k
(a)
 if QkXqk, then Tk
* is a feasible solution, using (10)

or (12) to obtain(

Pkðn; pkÞ ¼

P1kðn; p1kÞ if p1kop0k ;

P2kðn; p2kÞ if p2kXp0k :
(b)
 if Qkoqk, then determine ~p0k by solving (21)
(i)
 If there exists a p1k such that p1ko ~p0k and

p1k satisfies qP1j(n, p)/qp ¼ 0 and

q2P1j(n, p)/qp2o0, where P1j(n, p) is given

as in (19), then set T�k ¼ T1kðp1kÞ ¼

qk=ðap�d1k Þ. We use (19) to obtain Pk(n, pk) ¼

P1k(n, p1k)
(ii)
 If there exists a p2k such that p2X ~p0k and

p2k satisfies qP2j(n, p)/qp ¼ 0 and

q2P2j(n, p)/qp2o0, where P2j(n, p) is given

as in (20), then set

T�k ¼ T2kðp2kÞ ¼ qk=ðap�d2k Þ. We use (20) to

obtain Pk(n, pk) ¼ P2k(n, p2k)
Step 4
 Find max
j¼1;2;...;k

Pjðn; pjÞ. Set P�ðn; pðnÞÞ ¼ max
j¼1;2;...;k

Pjðn;pjÞ, then, for

given n, p(n) is the optimal retail price and the corresponding

replenishment cycle length T(n) is the optimal replenishment

cycle length
Step 5
 Let n ¼ n+1 repeats Steps 2–4 to find P�ðn; pðnÞÞ

Step 6
 If P�ðn; pðnÞÞXP�ðn� 1; pðn�1ÞÞ, go to Step 5. Otherwise the

optimal solution is ðn�; p� ; T�Þ ¼ ðn� 1;pðn�1Þ; T ðn�1Þ
Þ
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5. Numerical examples
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Example 1. In order to illustrate the above solution
procedure, let us consider an inventory system with the
data: a ¼ 106, d ¼ 1.5, r ¼ 0.95, SV ¼ 1000, SB ¼ 200,
rV ¼ 0.05, rB ¼ 0.1, IVp ¼ 0.04, IBe ¼ 0.09, IBp ¼ 0.10,
c0 ¼ 1, c1 ¼ 2.5�104, c2 ¼ 2.5�10�5, v ¼ 7 and the pro-
duct weighs y ¼ 2 lbs per unit. In addition, we assume
that the supplier offers credit terms as follows:
Z
 Q (units/order)
 NZ (days)
1
 0pQo1000
 30
2
 1000pQo10,000
 45
3
 10,000pQ
 60
A freight rate schedule is offered below:
e
 W (lbs/ship)
 ce ($/lb)
1
 0pWo1000
 0.60
2
 1000pWo5000
 0.57
3
 5000pW
 0.51
Combining the two tables, we obtain the following

schedule
J
 Q (units/order)
 M (days)
 F ($/unit)
1
 0pQo500
 30
 1.20
2
 500pQo1000
 30
 1.14
3
 1000pQo2500
 45
 1.14
4
 2500pQo10,000
 45
 1.02
5
 10,000pQ
 60
 1.02
The optimal solutions obtained through Algorithm 1 are

presented in Table 1 as System I. Optimal solutions from

other policies are also presented in Table 1 as Systems II,

III, IV, V and VI, to help illustrate the effects of the strategy

represented by System I where both the freight rate and

trade credit are linked to the order quantity.

Looking at the optimal decisions in System I, where the
freight rate and credit period offered are dependent on
the order quantity, the optimal annual joint total profit for
the supply chain is $382,614 and the optimal order
quantity is 2500 units/order. Therefore, the buyer pays
for the shipments at $1.02/unit and pays the purchase off
within 45-day after delivery. In addition, the optimal retail
price is $13.964/unit and the optimal replenishment cycle
is 32.06 days. In this case, the supplier’s production lot
size is 31 times the order quantity or 77,500 units per
setup.

The only difference between System II and System I is
that System II assumes the credit period offered by the
supplier is 30 days (i.e., ‘‘net30’’). In Table 1, we show that
the annual joint total profit is less in System II compared to
System I. This result suggests that managers should
consider a trade credit policy as a marketing strategy and
link it with the order quantities to improve the supply chain
performance. In System III, a quantity discount in the freight
rate is offered without a corresponding trade credit offer.
From Table 1, we show that under this condition, the buyer
will order 2653 units per order to take advantage of the
freight rate discount. However, a bigger lot size leads to a
longer inventory cycle and fewer deliveries (lower value of
n�). To improve market demand the buyer reduces the retail
price which in turn decreases the total profit for the entire
supply chain compared to System I. We can also note that
the channel’s optimal joint total profits in Systems IV, V and
VI (all with a fixed freight rate) are less than that in Systems
I, II and III, where freight rate discounts are offered. With
the results shown in Table 1, we can see a consistent
positive impact on profits for the entire supply chain system
when freight rate discounts are offered.

When comparing the optimal solutions between
System I and System IV from the numbers in Table 1, we
can see that, without the offer of freight rate discounts,
the buyer will order less per order with a shorter
replenishment cycle in System IV. This result illustrates
that in such a situation the buyer shortens the replenish-
ment cycle to take advantage of the trade credit more
frequently. Furthermore, a higher retail price is set which
results in a decrease in both demand and in the supplier’s
production size (i.e. 63,547 units/setup). Therefore, the
total profit for the entire supply chain is less when
compared to System I. Similarly, we see that the same
thing happens when comparing System IV and System V.
System IV outperforms System V, thus ruling out the
possibility that System V can fare better than System I. In
System VI, where neither trade credit nor freight rate
discount is offered, just as expected, the entire supply
chain has the lowest profits compared to the profit results
from the other systems. With System I being the superior
performer compared to the alternatives, it is clear that the
whole supply chain system benefits from a trade policy
that links both the trade credit and freight rate discount to
the order quantity.

Example 2. In this example, we study the effects of
variable capacity utilization r. Consider different
r 2 f0:15;0:25;0:50;0:75;0:95g, keeping the values of
other parameters the same as in Example 1. The algorithm
is applied to obtain the optimal solutions shown in Table 2.

It can be seen from Table 2 that as r increases, the retail

price is substantially lower, which results in a substantial

increase in demand. It is interesting that both the supplier’s

production size ðn�Q�Þ and the annual profit for the entire

supply chain increases with the increases in r. As a result,

the closer the production rate is to the demand rate, the

greater the gain is in the integrated mode. This implies that

if the supplier and buyer would work in a cooperative

manner to synchronize supply with actual customer

demand, the channel’s profit will improve.

Example 3. A sensitivity analysis is performed to test the
robustness of the model when two given parameters, SV

and SB, are changed. Table 3 illustrates the effects with
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750% variations of the given parameters. In order to
facilitate a clear comparison, we use the same numbers as
are used in Example 1 except for the two noted
parameters in Table 3.

When the setup cost SV is higher, the supplier tends to
produce more in one production run, thus forcing the
system to experience more frequent deliveries. In such a
case, the buyer increases the retail price, which in turn leads
to a decrease in product demand and the channel’s profit
suffers as a result. If the buyer’s ordering cost SB is adjusted
upward, the buyer will increase the optimal order quantity
to 10,000 units per order. At this lot size the buyer can
benefit from the supplier’s offer of a 60-day credit period
and enjoys a low $1.02 per unit freight rate.However, such a
large lot size lengthens the optimal inventory cycle to 127.18
days. To improve product demand the buyer reduces the
retail price, and, as would be expected, the joint total profit
P(n, p, T) is less than what it is in the base case.
6. Summary and conclusions

In this paper, we first formulated an integrated suppli-
er–buyer inventory model with a few assumptions. The
market demand is sensitive to the retail price and the order
size is linked to both the trade credit and freight rate. The
production rate will react to the market demand rate.
Furthermore, the production cost is a convex function of the
production rate. By analyzing the total channel profit
function as explained in Section 4, we then developed a
solution algorithm to simultaneously determine the optimal
order quantity, retail price and the number of shipments per
production run from the supplier to the buyer.

This paper demonstrates that significant profit increase
potential occurs for the entire supply chain by linking the
trade credit policy and freight rate policy to the order
quantity. The results in the numerical examples indicate
that the ratio between the buyer’s demand rate and the
supplier’s production rate is an important parameter for
the channel’s profit. When the production rate is close to
the demand rate, the supplier and buyer can work in a
cooperative manner, synchronizing supply with actual
customer demand, to maximize the channel’s profit.

In reality, industries have unique needs in transporta-
tion logistics management to satisfy the delivery and
service requirements of their customers. These needs
account for the wide range of shipping options and
freight rates. The shipment could be local, domestic or
international. The load could be LTL, TL or small package.
Or the route the freight is transported on can be land, sea,
air or any combination of the three. These are all examples
of freight options. Moreover, increasing emphasis on ‘‘the
perfect order’’ is driving many companies to focus on
product damage reduction in shipping. It is only logical
that more transportation policy considerations need to be
part of future researches. Another extension of this work
may be set in the direction of considering demand as a
function of price and time. Similarly, we can extend this
model to allow for shortages and backorders. Finally,
while this paper deals with a situation that allows only for
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Table 2
Computation results for Example 2

r Optimal paying time Optimal freight

rate

n� Q� n�Q� p� Dðp�Þ cðR�Þ T� P(n, p, T)

0.15 45 days after delivery 1.02 4 2500 10,000 25.122 12,880 3.4379 70.84 325,303

0.25 45 days after delivery 1.02 6 2500 15,000 21.070 16,332 3.0159 55.87 340,372

0.50 45 days after delivery 1.02 8 2500 20,000 16.873 22,044 2.6693 41.39 360,743

0.75 45 days after delivery 1.02 13 2500 32,500 14.956 25,941 2.5875 35.18 373,651

0.95 45 days after delivery 1.02 31 2500 77,500 13.964 28,459 2.5835 32.06 382,614

------------------------------------------------------------------------------------------------------------------------------------------------

Table 3
Computation results for Example 3

Optimal paying time Optimal freight

rate

n� Q� n�Q� p� Dðp�Þ cðR�Þ T� P(n, p, T)

The base case 45 days after delivery 1.02 31 2500 77,500 13.964 28,459 2.5835 32.06 382,614

Parameter change SV +50% 45 days after delivery 1.02 37 2500 92,500 13.977 28,424 2.5836 32.10 382,325

�50% 45 days after delivery 1.02 22 2500 55,000 13.948 28,504 2.5833 32.01 382,991

SB +50% 60 days after delivery 1.02 8 10,000 80,000 13.878 28,698 2.5828 127.18 378,592

�50% 45 days after delivery 1.02 31 2500 77,500 13.866 28,732 2.5827 31.76 384,595
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equal shipments, this assumption may be relaxed so
unequal shipments can be looked at as well.
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Appendix A. To show that 2S̄ � ap�dðpIBe � vIBpÞM
2
j 40, if

2S̄XDj

Because Dj ¼ ap�d(vrB+pIBe+cj)Mj
2, thus, from 2S̄XDj

we have

2S̄Xap�dðvrB þ pIBe þ cjÞM2
j . (A.1)

Therefore, it becomes

2S̄� ap�dðpIBe � vIBpÞM
2
j Xap�dðvrB þ pIBe þ cjÞM2

j

� ap�dðpIBe � vIBpÞM
2
j ¼ ap�d½vðrB þ IBpÞ þ cj�M2

j 40.

(A.2)

The proof is completed.
Appendix B

The full derivations for qP1j(n, p)/qp, q2P1j(n, p)/qp2,
qP2j(n, p)/qp and q2P2j(n, p)/qp2, where P1j(n, p)
and P2j(n, p) are given as in Eqs. (10) and (12),
respectively:

qP1jðn; pÞ

qp
¼ ap�d�1 dðc0 þ Fj þMjvIVpÞ þ 2

d
r ap�dc2

�
�ðd� 1Þpð1þMjIBeÞ

�

þ
ap�d�1fr½dðc0jþ vrBÞ þ ðd� 1ÞpIBe� þ 2dap�dc2jg

ffiffiffī
S
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Appendix C

The full derivations for qP1j(n, p)/qp, q2P1j(n, p)/qp2,
qP2j(n, p)/qp and q2P2j(n, p)/qp2 where P1j(n, p) and
P2j(n, p) are given as in Eqs. (19) and (20), respectively:
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